Weak Convergence of Ishikawa Iterates for Nonexpansive Maps

نویسندگان

  • Abdul Rahim Khan
  • Hafiz Fukhar-ud-din
چکیده

We establish weak convergence of the Ishikawa iterates of nonexpansive maps under a variety of new control conditions and without employing any of the properties: (i) Opial’s property (ii) Fréchet differentiable norm (iii) Kadec-Klee property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of Common Fixed Points of Pointwise Asymptotic Nonexpansive Maps in a Hadamard Space

We establish weak and strong convergence of Ishikawa type iterates of two pointwise asymptotic nonexpansive maps in a Hadamard space. For weak and strong convergence results, we drop “rate of convergence condition”, namely , to answer in the affirmative to the open question posed by Tan and Xu [1] even in a general setup.     1 1 n n c x      

متن کامل

Convergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.

متن کامل

On the Ishikawa iteration process in CAT(0) spaces

In this paper, several $Delta$ and strong convergence theorems are established for the Ishikawa iterations for nonexpansive mappings in the framework of CAT(0) spaces. Our results extend and improve the corresponding results

متن کامل

Iterative Approximations for a Family of Multivalued Mappings in Banach Spaces

In this paper we consider the convergence of iterative processes for a family of multivalued nonexpansive mappings. Under somewhat different conditions the sequences of Noor, Mann and Ishikawa iterates converge to the common fixed point of the family of multivalued nonexpansive mappings.

متن کامل

On iterative fixed point convergence in uniformly convex Banach space and Hilbert space

Some fixed point convergence properties are proved for compact and demicompact maps acting over closed, bounded and convex subsets of a real Hilbert space. We also show that for a generalized nonexpansive mapping in a uniformly convex Banach space the Ishikawa iterates converge to a fixed point. Finally, a convergence type result is established for multivalued contractive mappings acting on clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010